Воспринимаемая частота волны зависит от относительной скорости ее источника.
Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной. Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм — такой примерно звукоряд. Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.
Волны — вообще вещь странная. Представьте себе пустую бутылку, болтающуюся неподалеку от берега. Она гуляет вверх-вниз, к берегу не приближаясь, в то время как вода, казалось бы, волнами набегает на берег. Но нет — вода (и бутылка в ней) — остаются на месте, колеблясь лишь в плоскости, перпендикулярной поверхности водоема. Иными словами, движение с
... Читать дальше »
Объекты микромира описываются и как частицы, и как волны, и одно описание дополняет другое.
В повседневной жизни имеется два способа переноса энергии в пространстве — посредством частиц или волн. Чтобы, скажем, скинуть со стола костяшку домино, балансирующую на его краю, можно придать ей необходимую энергию двумя способами. Во-первых, можно бросить в нее другую костяшку домино (то есть передать точечный импульс с помощью частицы). Во-вторых, можно построить в ряд стоящие костяшки домино, по цепочке ведущие к той, что стоит на краю стола, и уронить первую на вторую: в этом случае импульс передастся по цепочке — вторая костяшка завалит третью, третья четвертую и так далее. Это — волновой принцип передачи энергии. В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, баскетбольный мяч — это частица, а звук — это волна, и всё ясно.
Длина волны квантовой частицы обратно пропорциональна ее импульсу.
Один из фактов субатомного мира заключается в том, что его объекты — такие как электроны или фотоны — совсем не похожи на привычные объекты макромира. Они ведут себя и не как частицы, и не как волны, а как совершенно особые образования, проявляющие и волновые, и корпускулярные свойства в зависимости от обстоятельств (см.Принцип дополнительности). Одно дело — это заявить, и совсем другое — связать воедино волновые и корпускулярные аспекты поведения квантовых частиц, описав их точным уравнением. Именно это и было сделано в соотношении де Бройля.
Луи де Бройль опубликовал выведенное им соотношение в качестве составной части своей докторской диссертации в 1924 году. Казавшееся сначала сумасшедшей идей, соотношение де Бройля в корне пере
... Читать дальше »
Можно экспериментально определить, имеются ли в квантовой механике неучтенные скрытые параметры.
«Бог не играет в кости со Вселенной».
Этими словами Альберт Эйнштейн бросил вызов коллегам, разрабатывавшим новую теорию — квантовую механику. По его мнению, принцип неопределенности Гейзенберга и уравнение Шрёдингера вносили в микромир нездоровую неопределенность. Он был уверен, что Создатель не мог допустить, чтобы мир электронов так разительно отличался от привычного мира ньютоновских бильярдных шаров. Фактически, на протяжении долгих лет Эйнштейн играл роль адвоката дьявола в отношении квантовой механики, выдумывая хитроумные парадоксы, призванные завести создателей новой теории в тупик. Тем самым, однако, он делал доброе дело, серьезно озадачивая теоретиков противоположного лагеря своими парадоксами и заставляя
... Читать дальше »
Экстремальный принцип в физике — общее название для ряда фундаментальных постулатов, на которых строятся отдельные разделы современной физики. В общих словах, экстремальный принцип можно сформулировать следующим образом:
Система ведёт себя таким образом, чтобы некоторая величина принимала минимальное (реже: максимальное) возможное значение.
------------------------------------------------------------------------------ источник википедия